The Los Angeles Silhouette Club

Ballistic Formulas / Conversion Tables / Notes

Loads Per Pou	und of Powder	<u>Weight / Length</u> Equivalents	Conversion Factors
5 gr. <u>= 1400 40 gr.</u>	=175 75 gr. = 93	7000 Grains = 1 Pound	Pounds x 7000 = Grains
10 gr. = 700 45 gr.	=155 80 gr. = 87	437.5 Grains = 1 Ounce	Ounces x 437.5 = Grains
15 gr. = 466 50 gr. =	=140 85 gr. = 82	15.43 Grains = 1 Gram	Grains x .00229 = Ounces
20 gr. = 350 55 gr.	=127 90 gr. = 77	$\frac{25.4}{\text{Millimeters}} = 1 \text{ Inch}$	Grams x15.4324 = Grains
25 gr. = 280 60 gr. =	=116 95 gr. = 73		Grains x .0648 = Grams
30 gr. = 233 65 gr.	= 107 100 gr. = 70		Inches x 25.4 = Millimeters
35 gr. = 200 70 gr.	=100		Millimeters x .03937 = Inches

Common Abbreviations

ACP	> Automatic Colt Pistol	HP	> Hollow Point	R/RB	> Round Ball
AV	> Average Velocity	HPBT	> Hollow Point Boat Tail	RF	> Rim Fire
BB	> Bevel Base	HS	> Hydra Shok HP (Federal)	RN	> Round Nose
BBWC	Bevel Base Wadcutter	J	> Jacketed Bullet	SAA	> Single Action Army
BC	> Ballistic Coefficient	шс	> Jacketed Hollow	SD	Sectional Density or
BP	> Bullet Pull	5110	Core/Cavity	50	Standard Deviation
BPS	> Black Powder Sil.	JFP	> Jacketed Flat Point	SIL	> Silhouette
BR	> Bench Rest	JHP	> Jacketed Hollow Point	SJ	> Short Jacket
BT	> Boat Tail	KEITH	> Elmer Keith Bullet Design	SP	> Spire Point / Soft Point
CAV	> Cavalry	L/LB	> Lead Bullet	SWC	> Semi-Wadcutter
СВ	> Cast Bullet	LBT	> Lead Bullet Technology	SSP	> Single Shot Pistol
CF	> Center Fire	LD	> Loading Density	ТС	> Truncated Cone
CV	Coefficient / >Variation	LOS	> Line of Sight	T/C	> Thompson Center Arms
CUP	Copper Units of Press.	LRN	> Lead Round Nose	TMJ	> Total Metal Jacket
DCM	Dir. Civilian Marksmanship	МС	> Metal Case	TOF	> Time of Flight
FMJ	> Full Metal Jacket	ME	> Muzzle Energy	WC	> Wadcutter
FN	> Flat Nose	MOA	> Minute of Angle	WCF	> Winchester Center Fire
FP	> Flat Point	MR	> Mean Radius	WLN	Wide Long Nose (LBT bullet > design)
FPS	> Feet Per Second	MV	> Muzzle Velocity	XTP	> Extreme Terminal
GC	> Gas Check	NSS	> North-South Skirmish		Performance, (Hornady jacketed hollow point)
HBWC	> Hollow Base WC	OAL	> Over All Length		
HJ	> Half Jacket	PSI	> Pounds Per Square Inch		

Greenhill Formula

The formula to determine the correct rate of rifling pitch for bullets of usual construction (lead alloy or jacketed) is known as the "Greenhill Formula".

Step One:	Determine the length of the bullet in calibers. (Bullets length in inches divided by the bullets nominal caliber).			
Step Two:	Divide 150 (a constant) by the bullets length in calibers.			
Step Three:	Multiply the result of step two by the bullets "nominal" caliber. This will give the desired rifling twist rate.			
	To find the correct twist for a .30 caliber 220 grain bullet 1.35 inches long.			
Example:	$\frac{1.35}{1.35} = 45$ collibors $\frac{150}{22.22} = 33.33 \times .30 = 9.999$			
	= 4.5 calibers $= 35.35.30 4.5 (or 1 in 10 inch twist)$			

Associations / Organizations Abbreviations

CBA	> Cast Bullet Association
CCA	> Colt Collectors Association
IHMSA	International Handgun Metallic Silhouette Association
IPSC	International Practical Shooting >Association
NBRSA	>National Bench Rest Shooters Association
NRA	> National Rifle Association
NRMA	National Reloading Manufacturers' >Association
NSSF	>National Shooting Sports Foundation
SAAMI	Small Arms and Ammunition Manufacturers Institute
SASS	> Single Action Shooters Society

Is Your Range In Meters Or Yards?

Л		14	-	١.
VI	u		D	Ľ
	-		 -	۰.

Yards	By (0.9144	To get	Meters
Meters	Ву	1.094	To get	Yards
FPS	Ву	0.3048	To get	MPS
MPS	Ву	3.281	To get	FPS
FPS	Ву	0.6818	To get	MPH

Abbreviations

Abbi cviations					
FPS	=	Feet Per Second			
MPS	=	Meters Per Second			
MPH	=	Miles Per Hour			

Muzzle Energy

Weight of bullet (in grains) x velocity (in foot seconds) x velocity x 0.000002218 = energy in foot pounds.	Multiply the bullet weight in grains by the velocity at impact. Divide the product by 226,000 (a gravimetric Constant).
Example: 100 grain bullet at 3000 ft/seconds > 100 x 3000 x 3000 x 0.000002218 = 1996 foot pounds	Example: 45 caliber 240 grain bullet 200 yard velocity of 985 fps. 240 x 985 = 236400 divided by 226,000 = 1.046 pound-seconds momentum

Standard Deviation

Example: 5 shot string, velocity's of 1020, 980, 1000, 1015, 985. First, add the five velocity's and take their average: 1020, 980, 1000, 1015, 985 The five velocity's add up to 5000 fps. Their average is 1,000 fps (5000/5) Next subtract the average from each velocity and square the difference. Add up the squared differences (1250) and divide by 4 (the number of velocity's minus one).

Always divide the number of measurements minus one. The result is 312.5 or 17.68: $(17.68 \times 17.68 = 312.5)$.

Momentum In Pound Seconds

Coefficient of Variation

The coefficient of Variation shows the standard deviation as a percent of the average and is a more reliable measure of a loads consistency.

The smaller the CV the less variation there is "relative to the average". Divide the average into the standard deviation and multiply the result by 100. From the above example of standard deviation: The S.D. is 17.68. The average is 1000.

Example: 17.68 (SD) divided by 1000 (velocity) = 0.01768 x 100 = 1.768. The CV is 1.768.

Sectional Density

The formula for SD is: SD = WG /7000 x D^2

Where WG is weight is in grains and D is is the bullets diameter in inches.

Example: For a 180 grain .30 caliber bullet, $SD = 180/7000 \times .308$ squared. Divide the bullets weight in grains (180) by the number of grains in a pound (7000), which yields .2571428. Next square the bullets caliber in inches (.308 x .308) which gives .094864 and divide into .2571428 which yields .2710638. This rounds off to an SD of .271.

lasc.us Front Page / Index to all Articles