The Los Angeles Silhouette Club

Ballistic Formulas / Conversion Tables / Notes

Loads Per Pound of Powder			Weight / Length Equivalents	Conversion Factors
$5 \mathrm{gr} .=1400$	$40 \mathrm{gr} .=175$	$75 \mathrm{gr} .=93$	7000 Grains $=1$ Pound	Pounds x $7000=$ Grains
$10 \mathrm{gr} .=700$	$45 \mathrm{gr} .=155$	$80 \mathrm{gr} .=87$	437.5 Grains $=1$ Ounce	Ounces x 437.5 = Grains
$15 \mathrm{gr} .=466$	$50 \mathrm{gr} .=140$	$85 \mathrm{gr} .=82$	15.43 Grains $=1 \mathrm{Gram}$	Grains x.00229 = Ounces
$20 \mathrm{gr} .=350$	$55 \mathrm{gr} .=127$	$90 \mathrm{gr} .=77$	$\begin{array}{r} 25.4 \\ \text { Millimeters } \end{array}=1 \text { Inch }$	Grams x15.4324 = Grains
$25 \mathrm{gr} .=280$	$60 \mathrm{gr} .=116$	$95 \mathrm{gr} .=73$		Grains x . $0648=$ Grams
$30 \mathrm{gr} .=233$	$65 \mathrm{gr} .=107$	$100 \mathrm{gr} .=70$		Inches x $25.4=$ Millimeters
$35 \mathrm{gr} .=200$	$70 \mathrm{gr} .=100$			Millimeters x. $03937=$ Inches

Common Abbreviations

ACP > Automatic Colt Pistol	HP > Hollow Point	R/RB $>$ Round Ball
AV > Average Velocity	HPBT > Hollow Point Boat Tail	RF > Rim Fire
BB > Bevel Base	HS > Hydra Shok HP (Federal)	RN > Round Nose
BBWC $>$ Wadcutter	J > Jacketed Bullet	SAA > Single Action Army
$\begin{aligned} & \text { BC > Ballistic Coefficient } \\ & \text { BP > Bullet Pull } \end{aligned}$	JHC $\quad \begin{gathered}\text { Jacketed Hollow } \\ \text { Core/Cavity }\end{gathered}$	$\text { SD }>\begin{aligned} & \text { Sectional Density or } \\ & \text { Standard Deviation } \end{aligned}$
BPS > Black Powder Sil.	JFP > J acketed Flat Point	SIL > Silhouette
BR > Bench Rest	JHP > Jacketed Hollow Point	SJ > Short J acket
BT > Boat Tail	KEITH > Elmer Keith Bullet Design	SP > Spire Point / Soft Point
CAV > Cavalry	L/ LB > Lead Bullet	SWC > Semi-Wadcutter
CB > Cast Bullet	LBT > Lead Bullet Technology	SSP > Single Shot Pistol
CF > Center Fire	LD > Loading Density	TC > Truncated Cone
$\mathbf{C V}>\begin{gathered} \text { Coefficient / } \\ \text { Variation } \end{gathered}$	LOS > Line of Sight	T/C > Thompson Center Arms
CUP $>{ }_{\text {Press. }}^{\text {Copper Units of }}$	LRN > Lead Round Nose	TMJ > Total Metal J acket
$\text { DCM }>\begin{aligned} & \text { Dir. Civilian } \\ & \text { Marksmanship } \end{aligned}$	MC > Metal Case	TOF > Time of Flight
FMJ > Full Metal J acket	ME > Muzzle Energy	WC > Wadcutter
FN > Flat Nose	MOA > Minute of Angle	WCF > Winchester Center Fire
FP > Flat Point	MR > Mean Radius	WLN $>\begin{aligned} & \text { Wide Long Nose (LBT bullet } \\ & \text { design) }\end{aligned}$
FPS > Feet Per Second	MV > Muzzle Velocity	XTP > Extreme Terminal
GC > Gas Check	NSS > North-South Skirmish	Performance, (Hornady jacketed hollow point)
HBWC> Hollow Base WC	OAL > Over All Length	
HJ > Half Jacket	PSI > Pounds Per Square Inch	

Greenhill Formula

The formula to determine the correct rate of rifling pitch for bullets of usual construction (lead alloy or jacketed) is known as the "Greenhill Formula".

Step One: Determine the length of the bullet in calibers. (Bullets length in inches divided by the bullets nominal caliber).
Step Two: Divide 150 (a constant) by the bullets length in calibers.
Step Three: Multiply the result of step two by the bullets "nominal" caliber. This will give the desired rifling twist rate. To find the correct twist for a .30 caliber 220 grain bullet 1.35 inches long.

Example: $\frac{1.35}{.30}=4.5$ calibers $\frac{150}{4.5}=33.33 \quad$| $33.33 \times .30=9.999$ |
| :--- |
| (or 1 in 10 inch twist) |

Associations / Organizations

 Abbreviations

SASS $>$ Single Action Shooters Society

Is Your Range In Meters Or Yards?

Multiply				
Yards By				0.9144
Meters	By	1.094	To get Meters	
FPS	By	0.3048	To get	MPS
MPS	By	3.281	To get	FPS
FPS	By	0.6818	To get	MPH

Abbreviations

FPS	$=$	Feet Per Second
MPS	$=$	Meters Per Second
MPH	$=$	Miles Per Hour

Muzzle Energy

Weight of bullet (in grains) x velocity (in foot seconds) x velocity $x 0.000002218=$ energy in foot pounds.

Example: 100 grain bullet at $3000 \mathrm{ft} /$ seconds > $\mathbf{1 0 0} \mathbf{x}$ $\mathbf{3 0 0 0} \times 3000 \times 0.000002218=1996$ foot pounds

Momentum In Pound Seconds

Multiply the bullet weight in grains by the velocity at impact. Divide the product by 226,000 (a gravimetric Constant).
Example: 45 caliber 240 grain bullet 200 yard velocity of 985 fps . $\mathbf{2 4 0 \times 9 8 5} \mathbf{=} \mathbf{2 3 6 4 0 0}$ divided by $226,000=1.046$ pound-seconds momentum

Standard Deviation

Example: 5 shot string, velocity's of 1020, 980, 1000, 1015, 985. First, add the five velocity's and take their average: 1020, 980, 1000, 1015, 985
The five velocity's add up to 5000 fps . Their average is $1,000 \mathrm{fps}(5000 / 5)$ Next subtract the average from each velocity and square the difference. Add up the squared differences (1250) and divide by 4 (the number of velocity's minus one).
Always divide the number of measurements minus one. The result is 312.5 or 17.68 : $(17.68 \times 17.68=312.5)$.

Coefficient of Variation

The coefficient of Variation shows the standard deviation as a percent of the average and is a more reliable measure of a loads consistency.
The smaller the CV the less variation there is "relative to the average". Divide the average into the standard deviation and multiply the result by 100. From the above example of standard deviation: The S.D. is 17.68. The average is 1000 .

Example: 17.68 (SD) divided by 1000 (velocity) $=0.01768 \times 100=1.768$. The CV is 1.768.

Sectional Density

The formula for SD is: $S D=W G / 7000 \times D^{2}$
Where WG is weight is in grains and D is is the bullets diameter in inches.
Example: For a 180 grain .30 caliber bullet, $S D=180 / 7000 \times .308$ squared. Divide the bullets weight in grains (180) by the number of grains in a pound (7000), which yields .2571428 . Next square the bullets caliber in inches (.308 x . 308) which gives .094864 and divide into .2571428 which yields .2710638 . This rounds off to an SD of .271 .

lasc.us Front Page / Index to all Articles

